Structures of Tetramethylammonium Bis(2-thioxo-1,3-dithiole-4,5-dithiolato)niccolate(III) and Tetra-n-propylammonium Bis(2-thioxo-1,3-dithiole-4,5-dithiolato)niccolate(III)

By J. H. van Diemen, L. R. Groeneveld, A. Lind, R. A. G. de Graaff, J. G. Haasnoot and J. Reedijk*
Department of Chemistry, Gorlaeus Laboratories, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands

(Received 16 March 1988; accepted 20 June 1988)

Abstract

N}\left(\mathrm{CH}_{3}\right)_{4}\right]\left[\mathrm{Ni}\left(\mathrm{C}_{3} \mathrm{~S}_{5}\right)_{2}\right], \quad M_{r}=525.52\), triclinic, $\quad P \overline{1}, \quad a=10.017(9), \quad b=15.481$ (7),$\quad c=$ 18.485 (8) $\AA, \quad \alpha=110.31$ (4),$\quad \beta=95.14$ (4),$\quad \gamma=$ $125.90(4)^{\circ}, V=2008 \AA^{3}, Z=4, D_{x}=1.74 \mathrm{~g} \mathrm{~cm}^{-3}$, $\lambda($ Mo $K \alpha)=0.71073 \AA, \quad \mu=19.65 \mathrm{~cm}^{-1}, \quad F(000)=$ 1073, $T=295 \mathrm{~K}$, final $w R=0.036$ for 2732 reflections $[I>2 \sigma(I)]$. The structure consists of an integrated network of anions and cations. The non-planar [$\left.\mathrm{Ni}\left(\mathrm{C}_{3} \mathrm{~S}_{5}\right)_{2}\right]^{-}$anions are stacked two by two; the pairs are rotated 90° with respect to one another. No significant intermolecular $\mathrm{Ni}-\mathrm{Ni}$ or $\mathrm{Ni}-\mathrm{S}$ distances have been found. Only intermolecular $\mathrm{S}-\mathrm{S}$ contacts exist, shorter than the sum of the van der Waals radii of $3.70 \AA$. The minimum intermolecular $\mathrm{S}-\mathrm{S}$ distance is $3.231(4) \AA . \quad\left[\mathrm{N}\left(\mathrm{C}_{3} \mathrm{H}_{7}\right)_{4}\right]\left[\mathrm{Ni}\left(\mathrm{C}_{3} \mathrm{~S}_{5}\right)_{2}\right], \quad M_{\mathrm{r}}=637.73$, monoclinic, $P 2_{1} / c, a=12.711$ (3), $b=11.772$ (3), c $=19.157$ (4) $\AA, \beta=105 \cdot 24(2)^{\circ}, V=2766 \AA^{3}, Z=4$, $D_{x}=1.53 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{Mo} K \alpha)=0.71073 \AA, \quad \mu=$ $14.38 \mathrm{~cm}^{-1}, F(000)=1282, T=295 \mathrm{~K}$, final $w R=$ 0.045 for 1731 reflections $[I>2 \sigma(I)]$. The structure can be described as an arrangement of non-planar $\left[\mathrm{Ni}\left(\mathrm{C}_{3} \mathrm{~S}_{5}\right)_{2}\right]^{-}$anions as dimers, separated by $\left[\mathrm{N}\left(\mathrm{C}_{3} \mathrm{H}_{7}\right)_{4}\right]^{+}$cations. Two types of dimer can be distinguished. Only one type has a significant intermolecular S-S contact: $3 \cdot 496$ (1) \AA.

Introduction. In the last two decades 1,1 and 1,2dithiolenes have received considerable attention. One of the interesting features of these ligands is their ability to form stable complexes with (highly) oxidized metal ions. Transition-metal ions coordinated by the anionic ligand dmit (2-thioxo-1,3-dithiole-4,5-dithiolate) are known to yield compounds which are highly anisotropic (low-dimensional) metals or semiconductors (Kato, Mori, Kobayashi, Sasaki \& Kobayashi, 1984). An isotropic superconductor with dmit has also been described (Bousseau, Valade, Legros, Cassoux, Garbauskas \& Interrante, 1986). This compound consists of planar $\left[\mathrm{Ni}(\mathrm{dmit})_{2}\right]^{n-}$ anionic units ($n=1,2$) and open-shell cations, tetrathiafulvalene (TTF). Recently, another $\left[\mathrm{Ni}(\mathrm{dmit})_{2}\right]$ compound with superconducting

[^0]0108-2701/88/111898-05\$03.00
behaviour has been synthesized (Kim, Kobayashi, Sasaki, Kato \& Kobayashi, 1987; Kobayashi, Kim, Sasaki, Kato, Kobayashi, Moriyama, Nishio, Kajita \& Sasaki, 1987). The cationic part of this compound contains closed-shell cations: $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]^{+}$.

It has been established that the stacking of the $\left[M(\mathrm{dmit})_{2}\right]^{n-}$ ions can vary dramatically with a change of counterion (Kobayashi, Kim, Sasaki, Kato \& Kobayashi, 1987), often resulting in totally different conducting properties. As part of a study to investigate the influence of the counterion in relation to the structure of $\left[\mathrm{Ni}(\mathrm{dmit})_{2}\right]^{n-}$ complexes, crystal structures are described of $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]\left[\mathrm{Ni}(\mathrm{dmit})_{2}\right]$ and $\left[\mathrm{N}\left(\mathrm{C}_{3} \mathrm{H}_{7}\right)_{4}\right]-$ $\left[\mathrm{Ni}(\mathrm{dmit})_{2}\right]$, both part of the series $\left(\mathrm{N} R_{4}\right)\left[\mathrm{Ni}(\mathrm{dmit})_{2}\right]$ ($R=\mathrm{CH}_{3}, \quad \mathrm{C}_{2} \mathrm{H}_{5}, \quad n-\mathrm{C}_{3} \mathrm{H}_{7}$ and $n-\mathrm{C}_{4} \mathrm{H}_{9}$). Crystal structures of $\left(\mathrm{NEt}_{4}\right)\left[\mathrm{Ni}\left(\mathrm{dmit}_{2}\right]\right.$ and $\left(\mathrm{NBu}_{4}\right)\left[\mathrm{Ni}\left(\mathrm{dmit}_{2}\right]\right.$ have already been determined. The former is a one-dimensional zigzag chain with interchain distances $>3.8 \AA$ (Groeneveld, Schuller, Kramer, Haasnoot \& Reedijk, 1986; Kramer, Groeneveld, Joppe, Brom, de Jongh \& Reedijk, 1987). The latter is, according to the atomic positions given by Lindquist, Andersen, Sieler, Steimecke \& Hoyer (1982), a network of intermolecular sulfur interactions along the x and y axes with no contacts in the z direction. The present structures of $\left(\mathrm{NMe}_{4}\right)\left[\mathrm{Ni}(\mathrm{dmit})_{2}\right]$ and $\left(\mathrm{NPr}_{4}\right)\left[\mathrm{Ni}\left(\mathrm{dmit}_{2}\right]\right.$ differ significantly in the stacking of the $\left[\mathrm{Ni}(\mathrm{dmit})_{2}\right]^{-}$anions from the two structures reported earlier.

Experimental. The dianionic starting products $\left(\mathrm{N} R_{4}\right)_{2}-$ [$\mathrm{Ni}(\mathrm{dmit})_{2}$] $\left(R=\mathrm{CH}_{3}\right.$ and $\left.\mathrm{C}_{3} \mathrm{H}_{7}\right)$ have been prepared according to the literature (Steimecke, Sieler, Kirmse \& Hoyer, 1979; Valade, Legros, Bousseau, Cassoux, Garbauskas \& Interrante, 1985). $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4} \mid \mathrm{Br}\right.$ and $\left[\mathrm{N}\left(\mathrm{C}_{3} \mathrm{H}_{7}\right)_{4}\right] \mathrm{Br}$ have been used, instead of $\left[\mathrm{N}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{4} \mid \mathrm{Br}\right.$. The $\left(\mathrm{N} R_{4}\right)\left[\mathrm{Ni}(\mathrm{dmit})_{2}\right]$ coordination compounds can be prepared following two different pathways:
(i) oxidation of $\left(\mathrm{N} R_{4}\right)_{2}\left[\mathrm{Ni}(\mathrm{dmit})_{2}\right]$ with diiodine;
(ii) autoxidation of $\left(\mathrm{N} R_{4}\right)_{2}\left[\mathrm{Ni}(\mathrm{dmit})_{2} l\right.$ using methods first described by Steimecke et al. (1979) for the synthesis of $\left(\mathrm{NBu}_{4}\right)\left[\mathrm{Ni}(\mathrm{dmit})_{2}\right]$.

Crystals suitable for X-ray analysis were synthesized according to (i). 1 mmol of $\left(\mathrm{N} R_{4}\right)_{2}\left[\mathrm{Ni}(\mathrm{dmit})_{2}\right]$ (c) 1988 International Union of Crystallography
was dissolved in 60 ml of acetone. To this solution, a solution of 0.5 mmol iodine and 200 mg NaI in 35 ml acetone was added at room temperature. The solution was evaporated to 30 or 40 ml . A black microcrystalline precipitate was formed. Both compounds were recrystallized from acetone. Small crystals are green while larger crystals appear to be black and opaque. Black crystals were used for X-ray analysis. Experimental data for both compounds are shown in Table 1. Enraf-Nonius CAD-4 four-circle diffractometer with graphite-monochromatized Mo K α radiation. Cell constants were determined from setting angles of 24 reflections (θ between 10 and 12°). The intensities were determined from $\omega / 2 \theta$ scans and corrected for Lorentz and polarization effects. Absorption correction $\left\{\right.$ for $\left(\mathrm{NPr}_{4}\right)\left[\mathrm{Ni}(\mathrm{dmit})_{2}\right.$ \} was applied using Monte-Carlo methods (de Graaff, 1973). Scattering factors and corrections for anomalous dispersion were taken from International Tables for X-ray Crystallography (1974). Nickel atoms were located using a Patterson map. Both structures were solved by automatic Fourier techniques, using the computer program AUTOFOUR (Kinneging \& de Graaff, 1984). An extinction correction parameter of 8.71×10^{-4} was applied (for the propyl compound) according to Zachariasen (1967). Least-squares refinement on F of non-hydrogen-atom positional and anisotropic thermal parameters. Positions of hydrogen atoms were calculated except those on the terminal carbon atoms of the $\left|\mathrm{N}\left(\mathrm{C}_{3} \mathrm{H}_{7}\right)_{4}\right|^{+}$cation. Refinement for the hydrogen positions of the methyl compound with Waser (1963) constraints. $\mathrm{C}-\mathrm{H}=0.95 \AA$ for the methyl and $0.98 \AA$ for the propyl compound. Isotropic temperature factors for the hydrogen atoms were 4.0 and $4.87 \AA^{2}$, respectively. Leiden University computer (IBM 3083); programs written or modified by Mrs E. W. RuttenKeulemans and R. A. G. de Graaff.

Discussion. Positional parameters and equivalent isotropic thermal parameters for the non-hydrogen atoms are listed in Table 2. Bond distances and angles are given in Table 3. An ORTEP drawing (Johnson, 1965) of a $\left|\mathrm{Ni}(\mathrm{dmit})_{2}\right|^{-}$anion, with the atomic labelling used in Tables 2 and 3, is given in Fig. 1. The two independent molecules of $\left(\mathrm{NMe}_{4}\right) \mid \mathrm{Ni}(\mathrm{dmit})_{2} \mathrm{I}$ (I) and the anion of $\left(\mathrm{NPr}_{4}\right)\left[\mathrm{Ni}(\mathrm{dmit})_{2} \mathrm{I}\right.$ (II) have been given the same atomic numbering. Stereoviews of the stacking of the $\left[\left.\mathrm{Ni}(\mathrm{dmit})_{2}\right|^{-}\right.$ions in both compounds are given in Figs. 2 and 3.*

[^1]Table 1. Experimental data for $\left(\mathrm{NMe}_{4}\right)\left|\mathrm{Ni}(\mathrm{dmit})_{2}\right|$ and $\left.\left(\mathrm{NPr}_{4}\right) / \mathrm{Ni}(\mathrm{dmit})_{2}\right)$

	$\left(\mathrm{NMe}_{4}\right)\left[\mathrm{Ni}(\mathrm{dmit})_{2}\right]$	$\left(\mathrm{NPr}_{4}\right)\left\|\mathrm{Ni}(\mathrm{dmit})_{2}\right\|$
Quadrants	$\pm h, \pm k, l$	$\pm h, k, \pm l$
θ range (${ }^{\circ}$)	2-22	2-21
Standard reflections*	2288, $22 \overline{8}$. 0008	2,0, $\overline{10}, 1 \overline{1} 99,4 \overline{4} 6$
No. of reflections measured	5111	6294
No. of independent reflections	4919	3151
$R_{\text {int }}$	0.048	0.039
Significant reflections $\|I>2 \sigma(I)\|$	2732	1731
h	-21 1021	-12 to 12
k	-16 to 16	0 to 11
1	0 to 19	-19to 19
Crystal size (mm)	$0.32 \times 0 \times 22 \times 0.18$	$0.29 \times 0.20 \times 0.12$
Transmission-factor range	0.89-1.08	0.75-0.85
Max. shift/e.s.d. in final cycle	0.064	0.026
t $\rho_{\text {max }}\left(\mathrm{e} \AA{ }^{3}\right.$)	0.30	0.40
$\Delta \rho_{\text {min }}\left(\mathrm{e}\right.$ (${ }^{3}$)	-0.29	-0.20
R	0.029	0.036
$\cdots R$	0.036	0.045
Weighting scheme	$1 / \sigma^{\prime}(F)$	$1 / \sigma^{\prime}(F)$
$\sigma^{2}(F)$	σ_{i}^{\prime} (counting stati	cs) $+0.014 F^{3}$

* Maximum intensity variation 6.65% for the methyl compound and 9.33% for the propyl compound.

In the $\left[\mathrm{Ni}(\mathrm{dmit})_{2}\right]^{-}$anions of (I)(1),(I)(2) and (II) the Ni atoms do not deviate from the S_{4} donor-atom plane by more than 0.011 (7) \AA. The other sulfur atoms S3-S4-S5 and S8-S9-S10 are tilted out of the plane. Other properties of the $\left\langle\mathrm{Ni}(\mathrm{dmit})_{2}\right|$ anions of both (I) and (II) are given in Table 4. The average values of the $\mathrm{Ni}-\mathrm{S}$ bond distances are $2 \cdot 157$ and $2 \cdot 160 \AA$. These values are an indication that the redox process within the nickel dithiolene complex has taken place at the central nickel atom [for Ni^{11} the average value of the $\mathrm{Ni}-\mathrm{S}$ bond distance is $2.21 \AA$ (Lindquist, Andersen, Sieler, Steimecke \& Hoyer, 1982)|.
$\left(\mathrm{NMe}_{4}\right) \mid \mathrm{Ni}\left(\mathrm{dmit}_{2} \mid\right.$ (I). Intermolecular contacts (Table 5) between $\left|\mathrm{Ni}(\mathrm{dmit})_{2}\right|$ ions are formed by $\mathrm{S}-\mathrm{S}$ contacts shorter than the van der Waals diameter of sulfur ($3.70 \AA$). No important $\mathrm{Ni}-\mathrm{S}$ contacts exist between the anions: the shortest distance is $3.98 \AA$, which is significantly larger than the sum of the van der Waals radii ($3.48 \AA$). Fig. 2 shows the packing of the $\left.\mid \mathrm{Ni}(\mathrm{dmit})_{2}\right]^{-}$ions. In contrast with $\left(\mathrm{NEt}_{4}\right)\left|\mathrm{Ni}(\mathrm{dmit})_{2}\right|$ (Groeneveld, Schuller, Kramer, Haasnoot \& Reedijk, 1986) the present structure does not consist of independent chains of anions and cations. The anions are stacked, side by side, in pairs with the central Ni atoms at a relatively large distance from one another. The neighbouring pairs are rotated 90°. Cations are positioned between the anion pairs which results in a tight network of anions and cations. The overall packing in this structure can be best described by two segregated stacks of anions, which are rotated 90° and slipped into each other. Each individual stack consists of a chain of two 'side by side' stacked anions. The pairs of the two segregated stacks are stacked 'face to face'.
$\left(\mathrm{NPr}_{4}\right)\left[\mathrm{Ni}(\mathrm{dmit})_{2}\right]$ (II). Compared to (I) the propyl compound (II) has only two significant intermolecular S-S contacts, 3.496 and $3.701 \AA$ (Table 5). In particular, the $\mathrm{S} 4-\mathrm{S} 10$ contact may give orbital

Table 2. Fractional atomic coordinates $\left[\times 10^{5}\right.$ for Table 3. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ within the $\mathrm{Ni}(1), \mathrm{Ni}(2)$ and $\times 10^{4}$ for the other atoms \rceil and $\left[\mathrm{Ni}\left(\mathrm{C}_{3} \mathrm{~S}_{5}\right)_{2}\right]^{-}$ion; e.s.d.'s include allowance for cellisotropic thermal parameters
parameter errors

	$B($ iso $)=\frac{8}{3} \pi^{2} \operatorname{trace}(\mathrm{U})$.				$\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]\left[\mathrm{Ni}\left(\mathrm{C}_{3} \mathrm{~S}_{5}\right)_{2}\right]$					
						Molecule 1	Molecule 2			
$\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]\left[\begin{array}{c} x \\ \left.\mathrm{Ni}\left(\mathrm{C}_{3} \mathrm{~S}_{5}\right)_{2}\right] \end{array}\right.$		y	z	B (iso) $\left(\AA^{2}\right)$	$\begin{aligned} & \mathrm{Ni}-\mathrm{S} 1 \\ & \mathrm{Ni}-\mathrm{S} 2 \end{aligned}$					
		$2 \cdot 159 \text { (2) }$				$2 \cdot 162(2)$				
		Ni -S6			$2 \cdot 159(3)$	2.160 (3)				
$\mathrm{Ni}(1)$	42482 (10)		19031 (7)	61719 (5)	3.14 (3)	Ni -S7	2.153 (2)	2.163 (2)		
S1(1)	6303 (2)		2732 (1)	7327 (1)	4.23 (6)	S1-Cl	1.709 (6)	1.710 (6)		
S2(1)	2256 (2)	395 (2)	6336 (1)	4.28 (6)	S2-C2	1.711 (6)	$1.712(6)$$1.740(6)$			
S3(1)	6280 (2)	1872 (1)	8572 (1)	3.79 (6)	S3-C1	1.732 (6)				
S4(1)	2525 (2)	-263 (2)	7673 (1)	4.28 (6)	S3-C3	1.718 (6)	1.736 (7)			
S5(1)	4565 (2)	134 (2)	9202 (1)	5.11 (7)	S4-C2	1.722 (6)	1.743 (6)			
S6(1)	2258 (2)	1049 (1)	4982 (1)	3.85 (6)	S4-C3	1.731 (6)	1.707 (7)			
S7(1)	6221 (2)	3488 (2)	6075 (1)	4.36 (6)	S5-C3	1.637 (6)	1.647 (7)			
S8(1)	2291 (2)	2036 (2)	3811 (1)	4.01 (6)	S6-C4	1.731 (6)	1.700 (6)			
S9(1)	5975 (2)	4228 (2)	4789 (1)	4.51 (7)	S7-C5	1.719 (6)	1.711 (6)			
S10(1)	4056 (3)	3927 (2)	3285 (1)	5.62 (8)	S8-C4	1.730 (6)	1.744 (6)			
$\mathrm{C} 1(1)$	5223 (8)	1710 (6)	7678 (4)	$3 \cdot 3$ (2)	S8-C6	1.713 (7)	1.713 (7)			
C2(1)	3439 (8)	678 (5)	7242 (4)	3.1 (2)	S9-C5	1.728 (6)	1.744 (6)			
C3(1)	4460 (8)	555 (5)	8515 (4)	3.6 (2)	S9-C6	1.718 (6)	1.725 (7)			
C4(1)	3330 (8)	2158 (6)	4686 (4)	3.2 (2)	S10-C6	$1.657(6)$	1.653 (7)			
C5(1)	5051 (8)	3202 (5)	5158 (4)	3.2 (2)	$\mathrm{C} 1-\mathrm{C} 2$$\mathrm{C} 4-\mathrm{C} 5$	1.377 (8)	1.353 (8)			
C6(1)	4091 (8)	3411 (6)	3930 (4)	3.9 (2)		1.352 (8)	1.357 (8)			
$\mathrm{Ni}(2)$	101175 (11)	9628 (8)	85174 (6)	3.70 (3)	S1-Ni-S2	92.6 (1)	93.2 (1)			
S1(2)	12416 (2)	2615 (2)	8591 (1)	5.03 (7)	$\mathrm{Sl}-\mathrm{Ni}-\mathrm{S} 7$ 86.3(1)		87.7 (1)			
S2(2)	11686 (2)	1106 (2)	9510 (1)	4.27 (7)	$\mathrm{S} 2-\mathrm{Ni}-\mathrm{S} 6 \quad 88.3$ (1)		86.1 (1)			
S3(2)	16297 (2)	4436 (2)	9762 (1)	5.20 (7)	S 6 - $\mathrm{Ni}-\mathrm{S} 7$ 93.0(1)		93.3 (1)			
S4(2)	15642 (2)	3075 (2)	10615 (1)	4.72 (7)	$\mathrm{Ni-SI-Cl} \quad 102.9$ (2)		101.9 (2)			
S5(2)	19337 (2)	5393 (2)	11162 (1)	6.14 (8)	$\mathrm{Ni}-\mathrm{S} 2-\mathrm{C} 2 \quad 103.1$ (2)		102.0 (2)			
S6(2)	7818 (2)	-608 (2)	8521 (1)	4.71 (7)	$\mathrm{Cl}-\mathrm{S3}-\mathrm{C} 3 \quad 97.3$ (3)		97.6 (3)			
S7(2)	8534 (2)	745 (2)	7481 (1)	4.65 (7)	$\mathrm{C} 2-\mathrm{S4}-\mathrm{C} 3 \quad 97.4$ (3)		98.0 (3)			
S8(2)	3922 (2)	-2425 (2)	7393 (1)	4.91 (7)	$\mathrm{Ni}-\mathrm{S} 6-\mathrm{C} 4 \quad 102.5$ (2)		101.6 (2)			
S9(2)	4553 (2)	-1219 (2)	6420 (1)	4.93 (7)	$\mathrm{Ni}-\mathrm{S} 7-\mathrm{C} 5 \quad 102.4$ (2)		101.9 (2)			
S10(2)	859 (3)	-3498 (2)	5960 (2)	7.46 (9)	$\mathrm{C} 4-\mathrm{S8}-\mathrm{C} 6 \quad 96.9$ (3)		$97.7(3)$$97.2(3)$			
$\mathrm{Cl}(2)$	14095 (8)	3090 (5)	9396 (4)	3.9 (2)	C5-S9-C6$97.1 \text { (3) }$					
C2(2)	13786 (8)	2450 (5)	9800 (4)	3.6 (2)	$\mathrm{Sl}-\mathrm{Cl}-\mathrm{S} 3 \quad 123.2$ (4)		$\begin{array}{r} 97.2(3) \\ 122.5(4) \end{array}$			
C3(2)	17195 (9)	4355 (6)	10559 (4)	4.6 (3)	$\mathrm{Sl}-\mathrm{Cl} 1-\mathrm{C} 2 \quad 121.0$ (5)		$121.9 \text { (5) }$			
C4(2)	6137 (8)	-1118(6)	7706 (4)	3.8 (2)	S3-C1-C2 $\quad 115.9$ (5)		115.6 (5)			
C5(2)	6425 (8)	-540 (5)	7253 (4)	3.6 (2)	S2-C2-S4 $\quad 123.7$ (3)		123.1 (4)			
C6(2)	3010 (9)	-2426 (6)	6562 (4)	4.8 (3)	$\mathrm{S} 2-\mathrm{C} 2-\mathrm{C} 1$$120.4 \text { (5) }$		121.0 (5)			
N1	558 (7)	3077 (5)	1247 (3)	4.0 (2)	$\mathrm{S4}$-C2-C1 115.9 (4)		115.9 (5)			
C(11)	-436 (10)	2777 (7)	425 (4)	6.0 (3)	S3-C3-S4 $\quad 113.5$ (3)		112.8 (4)			
C(12)	-102 (10)	3436 (7)	1878 (5)	6.9 (4)	S3-C3-S5 $\quad 122.7$ (4)		122.4 (4)			
C(13)	246 (9)	1985 (6)	1183 (4)	5.5 (3)	S4-C3-S5 123.8(4)		124.8 (4)			
C(14)	2487 (9)	4113 (7)	1531 (5)	6.2 (3)	S6-C4-S8 $\quad 123.3$ (4)		122.1 (4)			
N2	465 (8)	3081 (5)	6235 (4)	4.5 (2)	S6-C4-C5 $\quad 120.3$ (5)		122.4 (5)			
C(21)	830 (11)	4236 (7)	6575 (5)	8.2 (4)	S8-C4-C5 $\quad 116.4$ (5)		115.5 (5)			
C(22)	1536 (12)	3097 (8)	6860 (5)	8.1 (4)	S7-C5-S9 $\quad 122.6$ (4)		123.2 (4)			
${ }_{\text {C(24) }}$	-1484 (11)	2025 (7)	5973 (6)	8.9 (5)	S7-C5-C4 $\quad 121.6$ (5)		120.8 (5)			
	931 (10)	2868 (7)	5491 (5)	6.9 (4)	S9-C5-C4	115.8 (4)	$116.0(5)$$113.5(4)$			
					S8-C6-S9					
$\left[\mathrm{N}\left(\mathrm{C}_{3} \mathrm{H}_{7}\right)_{4}\right]\left[\mathrm{Ni}\left(\mathrm{C}_{3} \mathrm{~S}_{5}\right)_{2}\right]$					$\begin{array}{ll}\text { S8-C6-S10 } & 124.0 \text { (4) } \\ \text { S9-C6-S10 } & \text { 122.2 (4) }\end{array}$					
						$124 \cdot 1 \text { (4) }$				
S1	717 (2)	-1584 (2)	1916 (1)	4.13 (7)			$\left[\mathrm{N}\left(\mathrm{C}_{3} \mathrm{H}_{7}\right)_{4}\right]\left[\mathrm{Ni}\left(\mathrm{C}_{3} \mathrm{~S}_{5}\right)_{2}\right]$			
S2	2464 (2)	-381 (2)	1276 (I)	4.17 (7)	$\begin{aligned} & \mathrm{Ni}-\mathrm{Si} \\ & \mathrm{Ni}-\mathrm{S} 2 \\ & \mathrm{Ni}-\mathrm{S} 6 \end{aligned}$	$2 \cdot 168$ (3)	$\mathrm{S} 1-\mathrm{Ni}-\mathrm{S} 2$			
S3	2459 (2)	-3339 (2)	2571 (1)	4.22 (7)		2.156 (2)		93.19 (9) 87.87 (9)		
S4	4061 (2)	-2194 (2)	2009 (1)	4.38 (7)			$\mathrm{S} 1-\mathrm{Ni}-\mathrm{S} 7$ $\mathrm{~S} 2-\mathrm{Ni}$	87.87 (9) 86.39 (9)		
S5	4719 (2)	-4257 (2)	2911 (2)	5.93 (9)		$2.159(3)$2.160 (3)	S2-Ni-S6	92.9 (1)		
S6	817 (2)	1288 (2)	528 (1)	4.49 (8)	$\stackrel{\mathrm{Ni}-\mathrm{S} 7}{\mathrm{Sl}-\mathrm{Cl}}$		$\mathrm{S} 6-\mathrm{Ni}-\mathrm{S} 7$			
S7	-861 (2)	288 (2)	1303 (1)	4.95 (8)	S2-C2S3-C1	1.717 (8)	$\stackrel{\mathrm{Ni}}{ } \mathbf{- S 2 - C 2}$	$102.2(3)$$101.7(3)$		
S8	-916(2)	2971 (2)	-201 (1)	4.86 (8)		1.724 (8)				
S9 S10	$-2468(2)$ $-3116(2)$	2062 (2)	$499(1)$ $-526(1)$	5.45 (9) 6.04 (9)	S3-C3 $\quad 1.731$ (8)	1.741 (8)	C2-S4-C3	97.7 (4)		
S10	-3116 (2) 2014 (6)	$3996(2)$ -2119	-526 (1)	6.04 (9) 3.4	$\mathrm{S} 4-\mathrm{C} 2 \quad 1.744(8)$		$\mathrm{Ni}-\mathrm{S} 6-\mathrm{C} 4$	101.8 (3)		
C2	2760 (6) 2769	--1598(7)	1791 (4)	3.4 (3) 3.4 (2)	$\begin{array}{ll}\text { S4-C3 } & 1.724(9) \\ \text { S5-C3 } & 1.646 \text { (8) }\end{array}$		$\mathrm{Ni}-\mathrm{S} 7-\mathrm{C} 5$	$101.9(3)$ $98.3(4)$		
C3	3794 (6)	-3320 (7)	2511 (4)	3.9 (3)			C4-S8-C6	$\begin{array}{r}98.3(4) \\ 98.8(4) \\ \hline 123.654\end{array}$		
C4	-460 (7)	1836 (7)	391 (4)	3.6 (3)	S6-C4	$1.701(8)$ 1.700	C5-S9-C6			
C5	-1184 (7)	1401 (7)	719 (4)	3.8 (3)	S7-C5	$1.700(8)$ $1.750(9)$	$\mathrm{S} 1-\mathrm{Cl}-\mathrm{S} 3$ $\mathrm{Sl} 1-\mathrm{C} 1-\mathrm{C} 2$	123.6 (5) $120.7(7)$		
C6	-2234 (7)	3069 (7)	-101 (4)	4.6 (3)	S8-C4 S8-C6	$1.750(9)$ $1.739(9)$	$\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2$ $\mathrm{~S} 3-\mathrm{C} 1-\mathrm{C} 2$	$120.7(7)$ $115.7(6)$		
$\stackrel{\mathrm{N}}{\mathrm{C} 11}$	2699 (5) 2990 (6)	$1617(5)$ 2085 (7)	3554 (3) 2880 (4)	$3.2(2)$ 3.9	S9-C5	1.756 (8)	S2-C2-S4	121.4 (5)		
C12	2287 (7)	3016 (8)	2436 (5)	3.9 (3)	S9-C6	1.730 (9)	S2-C2-C1	122.1 (6)		
C13	2738 (8)	3410 (8)	1818 (5)	5.3 (3)	S10-C6	1.622 (9) 1.35 (1)	S4-C2-C1	116.4 (6)		
C2I	3561 (6)	740 (7)	3909 (4)	3.8 (3)	$\xrightarrow{\text { Cl-C2 }}$		S3-C3-S4	$112.8(5)$ $123.6(5)$		
C22	3617 (8)	-367 (7)	3521 (5)	5.1 (3) $4.8(3)$	C4-C5	1.35 (1)	S3-C3-S5	$123.6(5)$ 123.6 (5)		
C23	4581 (7) 1562 (6)	$-1077(7)$ 1079 (7)	$3931(5)$ 3310 (4)	4.8 (3) 3.9 (3)			S6-C4-S8	$123.6(22.0(5)$ $121.7(7)$		
C32	1138 (7)	530 (8)	3309 (5)	$3.9(3)$ 5.1 (3)			S6-C4-C5	121.7 (7)		
C33	51 (7)	-41 (8)	3590 (5)	5.3 (3)			S8-C4-C5	116.3 (7) 123.3 (5)		
C41	2697 (6)	2561 (7)	4091 (4)	4.0 (3)			S7-C5-S9	123.3 (5) $121.6(7)$		
C42	3719 (7)	3279 (8)	4329 (5)	5.6 (3)			S7-C5-C4 S9-C5-C4	$\begin{aligned} & 121.6(7) \\ & 115.2(7) \end{aligned}$		
C43*	3695 (9)	3979 (9)	5002 (6)	7.4 (4)			S9-C5-C4	$\begin{aligned} & 115.2(7) \\ & 111.5(5) \end{aligned}$		
							S8-C6-S9	$\begin{aligned} & 111.5(5) \\ & 123.2(6) \end{aligned}$		
	* Atom	wing high th	anisotropy				S9-C6-S10	125.3 (5)		

overlap, which is important for the conductivity. The minimum non-bonding $\mathrm{Ni}-\mathrm{S}$ distance in the packing is $3.764 \AA$, which is much larger than the sum of the corresponding van der Waals radii. Fig. 3 shows that the packing of the anions may be described as dimers with the two molecules stacked 'face to face'. The S4-S 10 contact ($3.496 \AA$) is an intermolecular contact within the dimers where the two anionic molecules are relatively close to one another. In the other type of dimer the molecules are well separated and therefore no intermolecular $\mathrm{Ni}-\mathrm{Ni}, \mathrm{Ni}-\mathrm{S}$ or $\mathrm{S}-\mathrm{S}$ contacts exist. The shortest $\mathrm{S}-\mathrm{S}$ distance in these dimers is $4.467 \AA$. Although the dimers are separated by the $\left\{\left.\mathrm{N}\left(\mathrm{C}_{3} \mathrm{H}_{7}\right)_{4}\right|^{+}\right.$ cations, they are not completely isolated. Possible interactions between the two types of dimers are due to the S3-S7 contact of $3.701 \AA$. These interactions result

Fig. 1. ORTEP drawing of the $\left[\mathrm{Ni}(\mathrm{dmit})_{2}\right]^{-}$ion in the compounds $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]\left[\mathrm{Ni}\left(\mathrm{C}_{3} \mathrm{~S}_{5}\right)_{2}\right]$ and $\left.\left.\left[\mathrm{N}\left(\mathrm{C}_{3} \mathrm{H}\right)_{4}\right)_{4}\right] \mathrm{Ni}\left(\mathrm{C}_{3} \mathrm{~S}_{5}\right)_{2}\right]$ with the atomic labelling used in Table 2.

Fig. 2. Stereoview of the packing of the $\left[\mathrm{Ni}(\mathrm{dmit})_{2}\right]^{-}$ions of (I).
in a two-dimensional network of $\mathrm{S}-\mathrm{S}$ contacts in the x and y directions.

In addition to the non-planarity of the $\left|\mathrm{Ni}(\mathrm{dmit})_{2}\right|^{-}$ ions, the size of the counterion might also influence the stacking. The related $\left(\mathrm{NBu}_{4}\right)\left|\mathrm{Ni}(\mathrm{dmit})_{2}\right|$ has isolated layers of $\left[\mathrm{Ni}(\mathrm{dmit})_{2}\right]$ - anions with intermolecular $\mathrm{S}-\mathrm{S}$ contacts in the x and y directions (Lindquist, Andersen, Sieler, Steimecke \& Hoyer, 1982). The relatively large cations are stacked between the anionic layers along the z axis. The variation in size between the $\left(\mathrm{NPr}_{4}\right)^{+}$ and the $\left(\mathrm{NBu}_{4}\right)^{+}$cation is small, but the packing of the anions is totally different. The significantly smaller $\left(\mathrm{NMe}_{4}\right)^{+}$cations are stacked within the network of anions and the total structure is again different.

Although the cations are placed in the anionic network of (I), interanionic contacts are found in three dimensions. Strong deviations from planarity, especially the outer sulfur atoms S5 and S10, may create valence-orbital overlap between the sulfur atoms. Two possible 'conductivity pathways' exist in the packing of the anions. The first contains interactions between molecules (1) only along the $\{100\}$ plane. Sulfur-sulfur

Table 4. Non-planarity of the $\mid \mathrm{Ni}\left(\mathrm{dmit}_{2} \mid\right.$ ions

	$\begin{aligned} & \left(\mathrm{NMe}_{4}\right)[\mathrm{N} \\ & \text { Ion (1) } \end{aligned}$	$\begin{gathered} \text { dmit }_{2}{ }_{2}(\mathrm{I}) \\ \operatorname{lon}(2) \end{gathered}$	$\left.\left(\mathrm{NPr}_{4}\right) \mid \mathrm{Ni}(\mathrm{dmit})_{2}\right]$ (1I)
Max. deviations from the plane $\mathrm{Ni}, \mathrm{SI}-\mathrm{S} 2$, S6-S7 (\AA)	$\begin{aligned} & +0.34(\mathrm{SS}) \\ & -0.60(\mathrm{~S} 10) \end{aligned}$	$\begin{aligned} & +0.23(\mathrm{~S} 10) \\ & -0.28(\mathrm{~S} 5) \end{aligned}$	$\begin{aligned} & +0.13(\mathrm{~S} 4) \\ & -0.33(\mathrm{~S} 10) \end{aligned}$
Inclination between $\mathrm{Ni}, \mathrm{S} 1-\mathrm{S} 5, \mathrm{C} 1-\mathrm{C} 3$ and Ni, S7-S $10, \mathrm{C} 5-\mathrm{C} 6\left({ }^{\circ}\right)$	$3 \cdot 3$	0.9	9.5
Average $\mathrm{Ni}-\mathrm{S}$ bond distance (\AA)	$2 \cdot 157$	$2 \cdot 160$	$2 \cdot 160$

Table 5. Intermolecular distances (\AA)

$\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]\left[\mathrm{Ni}(\mathrm{dmit})_{2}\right]$		$\left[\mathrm{N}\left(\mathrm{C}_{3} \mathrm{H}_{7}\right)_{4} \mid \text { INi(dmit }\right)_{2} \mid$	
S4(1)-S9(2)	3.697 (3)	Ni -S6'"	3.764 (3)
S2(1)-S6(1)	3.710 (4)	S4-S10.10	3.496 (3)
S8(1)-S7(2ii)	3.641 (4)	S3-S7 ${ }^{\text {iii }}$	3.701 (3)
S5(1)-S5(1)	3.231 (4)		
S9(1)-S10(2)	3.691 (5)		
S1(1)-S5(2i)	$3 \cdot 552$ (2)		

The coordinates of the second atom in Table 2 have been transformed according to the following symmetry operations: (i) x, y, z; (ii) $-x,-y, 1-z$; (iii) $1-x,-y, 1-z$; (iv) $1-x,-y, 2-z$; (v) $1+x, 1+y, z$; (vi) $3-x, 1-y, 2-z$; (vii) $-x,-y,-z$; (viii) $-x,-\frac{1}{2}+y, \frac{1}{2}-z$.

Fig. 3. Stereoview of the packing of the $\left\lfloor\left.\mathrm{Ni}(\mathrm{dmit})_{2}\right|^{-}\right.$ions of (II).

Table 6. The $\left(\mathrm{N}_{4}\right)\left[\mathrm{Ni}(\mathrm{dmit})_{2}\right]$ compounds

Space group	$R=\mathrm{CH}_{3}$	$R=\mathrm{C}_{2} \mathrm{H}_{5}$ $P 2_{1} / n$	$\begin{gathered} R=n-\mathrm{C}_{3} \mathrm{H}_{7} \\ P 2_{1} / c \end{gathered}$	$R=n-\mathrm{C}_{4} \mathrm{H}_{9}$
Side/side (a) or face/face (b)	$a+b$	b	b	a
$\mathrm{Ni}-\mathrm{S}$ distance (A)	$2 \cdot 158$	2.157	2.160	2.156
$\begin{aligned} & \text { Variations in S-S } \\ & \text { contacts }(\AA) \end{aligned}$	3.23-3.71	3.51-3.71	3.50-3.70	3.40-3.61
$\sigma\left(\mathrm{S} \mathrm{cm}^{-1}\right)$	5×10^{-6}	4×10^{3}	$6 \times 10^{*}$	5×10^{4}

orbital overlap can be formed by the S5-S5 contacts ($3.231 \AA$, Table 5) and probably the S9-S10 contacts ($3.691 \AA$). The second pathway is a zigzag interaction between both molecules (Table 5) with contacts mainly along the x axis. These pathways may explain the relatively high single-crystal conductivity at room temperature found for this compound ($5 \times 10^{-6} \mathrm{~S} \mathrm{~cm}^{-1}$), compared to the related $\left(\mathrm{NBu}_{4}\right)\left[\mathrm{Ni}(\mathrm{dmit})_{2}\right]$ ($5 \times 10^{-9} \mathrm{~S} \mathrm{~cm}^{-1}$) (Groeneveld, Schuller, Kramer, Haasnoot \& Reedijk, 1986). The single-crystal conductivity of $\left(\mathrm{NPr}_{4}\right)\left[\mathrm{Ni}(\mathrm{dmit})_{2}\right], 6 \times 10^{-8} \mathrm{~S} \mathrm{~cm}^{-1}$, is of the same order of magnitude as the conductivity of $\left(\mathrm{NBu}_{4}\right)\left[\mathrm{Ni}(\mathrm{dmit})_{2}\right]$. The 'isolated character' of the anionic part of $\left(\mathrm{NPr}_{4}\right)\left[\mathrm{Ni}(\mathrm{dmit})_{2}\right]$ and $\left(\mathrm{NBu}_{4}\right)$ $\left[\mathrm{Ni}(\mathrm{dmit})_{2}\right]$ may cause the relatively low conductivity.

In Table 6 the main differences between the $\left(\mathrm{N} R_{4}\right)\left[\mathrm{Ni}(\mathrm{dmit})_{2}\right] \quad$ compounds $\quad\left(R=\mathrm{CH}_{3}, \quad \mathrm{C}_{2} \mathrm{H}_{5}\right.$, $n-\mathrm{C}_{3} \mathrm{H}_{7}$ and $n-\mathrm{C}_{4} \mathrm{H}_{9}$) are summarized.

We would like to express our gratitude to Mr G. J. Kramer for performing the conductivity measurements and to MrS . Gorter for data collection. This research is
sponsored by the Leiden Materials Science Centre (Werkgroep Fundamenteel Materialenonderzoek).

References

Bousseau, M., Valade, L., Legros, J.-P., Cassoux, P., Garbauskas, M. \& Interrante, L. V. (1986). J. Am. Chem. Soc. 108, 1908-1916.
Grafff, R. A. G. de (1973). Acta Cryst. A29, 298-301.
Groeneveld, L. R., Schuller, B., Kramer, G. J., Haasnoot, J. G. \& Reedijk, J. (1986). Recl Trav. Chim. Pays-Bas, 105, 507-509.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Kato, R., Mori, T., Kobayashi, A., Sasaki, Y. \& Kobayashi, H. (1984). Chem. Lett. pp. 1-4.

Kim, H., Kobayashi, A., Sasaki, Y., Kato, R. \& Kobayashi, H. (1987). Chem. Lett. pp. 1799-1802.

Kinneging, A. J. \& de Graaff, R. A. G. (1984). J. Appl. Cryst. 17, 364-366.
Kobayashi, A., Kim, H., Sasaki, Y., Kato, R. \& Kobayashi, H. (1987). Solid State Commun. 62, 57-64.

Kobayashi, A., Kim, H., Sasaki, Y., Kato, R., Kobayashi, H., Moriyama, S., Nishio, Y., Kajita, K. \& Sasaki, W. (1987). Chem. Lett. pp. 1819-1822.
Kramer, G. J., Groeneveld, L. R., Joppe, J. L., Brom, H. B., de Jongh, L. J. \& Reedijk, J. (1987). Synth. Met. 19, 745-750.
Lindqvist, O., Andersen, L., Sieler, H. J., Steimecke, G. \& Hoyer, E. (1982). Acta Chem. Scand. Ser. A, 36, 855-856.
Steimecke, G., Sieler, H. J., Kirmse, R. \& Hoyer, E. (1979). Phosphorus Sulfur, 7, 49-55.
Valade, L., Legros, J.-P., Bousseau, M., Cassoux, P., Garbauskas, M. \& Interrante, L. V. (1985). J. Chem. Soc. Dalton Trans. pp. 783-794.
Waser, J. (1963). Acta Cryst. 16, 1091-1094.
Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564.

Structure of catena-Poly[bis(ethylenediamine)nickel(II)- μ-cyano-dicyanonickel(II)- μ-cyano]

By Juraj Černák, Jozef Chomič and Danica Baloghová
Department of Inorganic Chemistry, University of P. J. Šafárik, Moyzesova 11, 04154 Košice, Czechoslovakia

and Michal Dunaj-Jurčo
Department of Inorganic Chemistry, Slovak Technical University, Radlinského 9, 81235 Bratislava, Czechoslovakia

(Received 24 November 1987; accepted 22 June 1988)

Abstract

Ni}(\mathrm{en})_{2} \mathrm{Ni}(\mathrm{CN})_{4}, M_{r}=341.67\), monoclinic, $P 2_{1} / n, a=7.104$ (3),$b=10.671$ (3), $c=9.940$ (2) \AA, $\beta=114.68(2)^{\circ}, \quad V=684.7(4) \AA^{3}, \quad Z=2, \quad D_{m}=$ 1.68 (1) $, D_{x}=1.66 \mathrm{Mg} \mathrm{m}^{-3}, \lambda(\mathrm{Mo} K \bar{\alpha})=0.71069 \AA$, $\mu=2.70 \mathrm{~mm}^{-1}, F(000)=352, T=295 \mathrm{~K}, R=0.0487$

0108-2701/88/111902-04\$03.00

for 1137 unique reffections. The structure is built up of infinite electroneutral $\left[-\mathrm{Ni}(\mathrm{en})_{2}-\mathrm{NC}-\mathrm{Ni}(\mathrm{CN})_{2}-\right.$ $\mathrm{CN}-\mathrm{l}_{\infty}$ chains parallel to the c axis. The $\mathrm{Ni}(1)$ atom is square-planar coordinated by four cyano groups. The trans-coordinated cyano groups form bridges to two (c) 1988 International Union of Crystallography

[^0]: * To whom correspondence should be addressed.

[^1]: * Lists of structure factors, anisotropic thermal parameters, H -atom parameters, distances and angles of the cations, and details of best weighted planes have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 51170 (27 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

